DataFrame
---------
Functions:
--------
1. head() - select row(top based)
2. tail() - Select row(bottom based)
3. loc() - select row(label based)
4. iloc() - select row (index based)
5. ix() - select row both label & index based
6. sort_values() - sort values
7. drop() - delete both row and column
8. del() - delete column
9. pop() - delete column
10. rename() - rename column name
11. Boolean Index
12. merge() - merge two dataframes based on left,right,outer,inner
13. concate() - combine dataframes
================================================
Ex1: (Creating a DataFrame using Dictionary)
----
import pandas as pd
s1 ={0:100,1:101,2:102}
s2 ={0:'jahab',1:'sudhir',2:'rino'}
s3 ={0:'Salem',1:'coimbatore',2:'chennai'}
Data ={'Roll':s1, 'Name':s2, 'City':s3}
s= pd.DataFrame(Data)
print(s)
output:
------
Roll Name City
0 100 jahab Salem
1 101 sudhir coimbatore
2 102 rino chennai
=======================================================
Ex3: (using head function)
---
import pandas as pd
s1 ={0:100,1:101,2:102,3:103}
s2 ={0:'jahab',1:'sudhir',2:'rino', 3:'jasmine'}
s3 ={0:'Salem',1:'coimbatore',2:'chennai', 3:'chennai'}
Data ={'Roll':s1, 'Name':s2, 'City':s3}
s= pd.DataFrame(Data)
print(s.head(2))
output:
------
Roll Name City
0 100 jahab Salem
1 101 sudhir coimbatore
=======================================================
Ex4: (using tail function)
---
import pandas as pd
s1 ={0:100,1:101,2:102,3:103}
s2 ={0:'jahab',1:'sudhir',2:'rino', 3:'jasmine'}
s3 ={0:'Salem',1:'coimbatore',2:'chennai', 3:'chennai'}
Data ={'Roll':s1, 'Name':s2, 'City':s3}
s= pd.DataFrame(Data)
print(s.tail(2))
output:
------
Roll Name City
2 102 rino chennai
3 103 Jasmine chennai
=======================================================
Ex5: (Selecting Data using loc function) - Label based
---
import pandas as pd
s1 ={0:100,1:101,2:102,3:103}
s2 ={0:'jahab',1:'sudhir',2:'rino', 3:'jasmine'}
s3 ={0:'Salem',1:'coimbatore',2:'chennai', 3:'chennai'}
Data ={'Roll':s1, 'Name':s2, 'City':s3}
s= pd.DataFrame(Data)
print(s.loc[1])
output:
------
Roll 101
Name sudhir
City coimbatore
=======================================================
Ex6: (Selecting Data using loc function) - Label based(select Column)
---
import pandas as pd
s1 ={0:100,1:101,2:102,3:103}
s2 ={0:'jahab',1:'sudhir',2:'rino', 3:'jasmine'}
s3 ={0:'Salem',1:'coimbatore',2:'chennai', 3:'chennai'}
Data ={'Roll':s1, 'Name':s2, 'City':s3}
s= pd.DataFrame(Data)
print(s.loc[:,'Roll'])
output:
------
0 100
1 101
2 102
3 103
===============================================
Ex7: (Selecting Data using iloc function) - Integer based
---
import pandas as pd
s1 ={0:100,1:101,2:102,3:103}
s2 ={0:'jahab',1:'sudhir',2:'rino', 3:'jasmine'}
s3 ={0:'Salem',1:'coimbatore',2:'chennai', 3:'chennai'}
Data ={'Roll':s1, 'Name':s2, 'City':s3}
s= pd.DataFrame(Data)
print(s.iloc[2])
output:
------
Roll 102
Name rino
City chennai
=========================================================
Ex8: (Selecting Data using sorting_values() function)
---
import pandas as pd
s1 ={0:100,1:101,2:102,3:103}
s2 ={0:'jahab',1:'sudhir',2:'rino', 3:'jasmine'}
s3 ={0:'Salem',1:'coimbatore',2:'chennai', 3:'chennai'}
Data ={'Roll':s1, 'Name':s2, 'City':s3}
s= pd.DataFrame(Data)
print(s.sort_values(by='Name'))
output:
------
Roll Name City
0 100 jahab Salem
3 103 Jasmine chennai
2 102 rino chennai
1 101 sudhir coimbatore
===========================================================
Ex9: (Deleting Data using drop() function) - delete row
---
import pandas as pd
s1 ={0:100,1:101,2:102,3:103}
s2 ={0:'jahab',1:'sudhir',2:'rino', 3:'jasmine'}
s3 ={0:'Salem',1:'coimbatore',2:'chennai', 3:'chennai'}
Data ={'Roll':s1, 'Name':s2, 'City':s3}
s= pd.DataFrame(Data)
print(s.drop(0))
output:
------
Roll Name City
1 101 sudhir coimbatore
2 102 rino chennai
3 103 Jasmine chennai
=================================================================
Ex10: (Deleting Data using drop() function) - delete column
---
import pandas as pd
s1 ={0:100,1:101,2:102,3:103}
s2 ={0:'jahab',1:'sudhir',2:'rino', 3:'jasmine'}
s3 ={0:'Salem',1:'coimbatore',2:'chennai', 3:'chennai'}
Data ={'Roll':s1, 'Name':s2, 'City':s3}
s= pd.DataFrame(Data)
print(s.drop('Name',axis=1))
output:
------
Roll City
0 100 Salem
1 101 coimbatore
2 102 chennai
3 103 chennai
====================================================================
Ex11: (Deleting Data using del() function) - delete column
---
import pandas as pd
s1 ={0:100,1:101,2:102,3:103}
s2 ={0:'jahab',1:'sudhir',2:'rino', 3:'jasmine'}
s3 ={0:'Salem',1:'coimbatore',2:'chennai', 3:'chennai'}
Data ={'Roll':s1, 'Name':s2, 'City':s3}
s= pd.DataFrame(Data)
del s['Name']
print(s)
output:
------
Roll City
0 100 Salem
1 101 coimbatore
2 102 chennai
3 103 chennai
==============================================================
Ex12: (Deleting Data using pop() function) - delete column
---
import pandas as pd
s1 ={0:100,1:101,2:102,3:103}
s2 ={0:'jahab',1:'sudhir',2:'rino', 3:'jasmine'}
s3 ={0:'Salem',1:'coimbatore',2:'chennai', 3:'chennai'}
Data ={'Roll':s1, 'Name':s2, 'City':s3}
s= pd.DataFrame(Data)
s.pop('Name')
print(s)
output:
------
Roll City
0 100 Salem
1 101 coimbatore
2 102 chennai
3 103 chennai
==============================================================
Ex13: (Rename column using rename() function)
---
import pandas as pd
s1 ={0:100,1:101,2:102,3:103}
s2 ={0:'jahab',1:'sudhir',2:'rino', 3:'jasmine'}
s3 ={0:'Salem',1:'coimbatore',2:'chennai', 3:'chennai'}
Data ={'Roll':s1, 'Name':s2, 'City':s3}
s= pd.DataFrame(Data)
s=s.rename(columns={'Name':'First'})
print(s)
output:
------
Roll First City
0 100 jahab Salem
1 101 sudhir coimbatore
2 102 rino chennai
3 103 Jasmine chennai
==============================================================
Ex14: (Boolean index)
---
import pandas as pd
s1 ={0:100,1:101,2:102,3:103}
s2 ={0:'jahab',1:'sudhir',2:'rino', 3:'jasmine'}
s3 ={0:'Salem',1:'coimbatore',2:'chennai', 3:'chennai'}
Data ={'Roll':s1, 'Name':s2, 'City':s3}
s= pd.DataFrame(Data)
s= pd.DataFrame(Data,index=[True,False,True,True])
print(s)
output:
------
Roll Name City
True 101 sudhir coimbatore
False 100 jahab Salem
True 101 sudhir coimbatore
True 101 sudhir coimbatore
=========================================================
Ex15: (merge() function)
----
import pandas as pd
s1 ={0:100,1:101}
s2 ={0:'jahab',1:'sudhir'}
s3 ={0:'Salem',1:'coimbatore'}
Data ={'Roll':s1, 'Name':s2, 'City':s3}
s= pd.DataFrame(Data)
s4 ={0:100,1:101}
s5 ={0:'Jasmine',1:'Rino'}
s6 ={0:'Salem',1:'coimbatore'}
Data1 ={'Roll':s4, 'Name':s5, 'City':s6}
s1= pd.DataFrame(Data1)
print(pd.merge(s,s1,on='Roll'))
output:
------
Roll Name_x City_x Name_y City_y
0 100 jahab Salem Jasmine Salem
1 101 sudhir coimbatore Rino coimbatore
=======================================================================
Ex16: (using Concat function)
----
import pandas as pd
s1 ={0:100,1:101}
s2 ={0:'jahab',1:'sudhir'}
s3 ={0:'Salem',1:'coimbatore'}
Data ={'Roll':s1, 'Name':s2, 'City':s3}
s= pd.DataFrame(Data)
s4 ={0:100,1:101}
s5 ={0:'Jasmine',1:'Rino'}
s6 ={0:'Salem',1:'coimbatore'}
Data1 ={'Roll':s4, 'Name':s5, 'City':s6}
s1= pd.DataFrame(Data1)
print(pd.concat([s,s1]))
output:
------
Roll Name City
0 100 jahab Salem
1 101 sudhir coimbatore
0 100 Jasmine Salem
1 101 Rino coimbatore
===================================================================
(Binary Operator Functions)
-----------------------------
-Combine two values to produce a new value.
1. add() - Adding of two DataFrames
2. sub() - subtracting DataFrame from another DataFrame
3. mul() - multiplying DataFrame with another DataFrame
4. div() - divison DataFrame from another DataFrame
5. mod() - modulo divison DataFrame from another DataFrame(get remainder value)
Ex17: Adding of two DataFrames using add()
====
import pandas as pd
s1 =[[2, 3, 4]]
Data1 =s1
res1= pd.DataFrame(Data1)
s2 =[[1, 3, 5]]
Data2=s2
res2=pd.DataFrame(Data2)
res=res1.add(res2)
print('Output')
print(res)
output:
------
0 1 2
0 3 6 9
========================================
Ex18: subtracting DataFrame from another DataFrame using sub()
====
import pandas as pd
s1 =[[2, 3, 4]]
Data1 =s1
res1= pd.DataFrame(Data1)
s2 =[[1, 3, 5]]
Data2=s2
res2=pd.DataFrame(Data2)
res=res1.sub(res2)
print('Output')
print(res)
output:
------
0 1 2
0 1 0 -1
============================================
Ex19: multiplying DataFrame with another DataFrame using mul()
====
import pandas as pd
s1 =[[2, 3, 4]]
Data1 =s1
res1= pd.DataFrame(Data1)
s2 =[[1, 3, 5]]
Data2=s2
res2=pd.DataFrame(Data2)
res=res1.mul(res2)
print('Output')
print(res)
output:
------
0 1 2
0 2 9 20
==============================================
Ex20: divison DataFrame from another DataFrame using div()
====
import pandas as pd
s1 =[[2, 3, 4]]
Data1 =s1
res1= pd.DataFrame(Data1)
s2 =[[1, 3, 5]]
Data2=s2
res2=pd.DataFrame(Data2)
res=res1.div(res2)
print('Output')
print(res)
output:
------
0 1 2
0 2.0 1.0 0.8
==========================================
Ex21: modulo divison DataFrame from another DataFrame using mod()
====
import pandas as pd
s1 =[[2, 3, 4]]
Data1 =s1
res1= pd.DataFrame(Data1)
s2 =[[1, 3, 5]]
Data2=s2
res2=pd.DataFrame(Data2)
res=res1.mod(res2)
print('Output')
print(res)
output:
------
0 1 2
0 0 0 4
===========================================